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Abstract

Graph Convolutional Networks (GCNs) have been widely
applied in various fields due to their significant power on
processing graph-structured data. Typical GCN and its vari-
ants work under a homophily assumption (i.e., nodes with
same class are prone to connect to each other), while ignor-
ing the heterophily which exists in many real-world networks
(i.e., nodes with different classes tend to form edges). Ex-
isting methods deal with heterophily by mainly aggregating
higher-order neighborhoods or combing the immediate rep-
resentations, which leads to noise and irrelevant information
in the result. But these methods did not change the propaga-
tion mechanism which works under homophily assumption
(that is a fundamental part of GCNs). This makes it diffi-
cult to distinguish the representation of nodes from differ-
ent classes. To address this problem, in this paper we de-
sign a novel propagation mechanism, which can automati-
cally change the propagation and aggregation process accord-
ing to homophily or heterophily between node pairs. To adap-
tively learn the propagation process, we introduce two mea-
surements of homophily degree between node pairs, which
is learned based on topological and attribute information, re-
spectively. Then we incorporate the learnable homophily de-
gree into the graph convolution framework, which is trained
in an end-to-end schema, enabling it to go beyond the as-
sumption of homophily. More importantly, we theoretically
prove that our model can constrain the similarity of represen-
tations between nodes according to their homophily degree.
Experiments on seven real-world datasets demonstrate that
this new approach outperforms the state-of-the-art methods
under heterophily or low homophily, and gains competitive
performance under homophily.

Introduction

Networks (such as social networks, citation networks, bio-
logical networks and traffic networks) are ubiquitous struc-
tures that can model relational data. Network analysis (Wang
et al| 2016, 2019; |Cao et al. 2021; Jin et al. [2021b; [He
et al. 2021) has been a hot research topic for decades and
has been widely used in many scientific fields such as com-
puter science, social science, biology and physics (Li and
Goldwasser||2019; [Yan et al.|2019). Recently, graph convo-
lutional network (GCN) (Kipf and Welling|2017), which ex-
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hibits significant power on processing graph-structured data,
has gained great success and already been adapted in various
network analysis tasks, including node classification, com-
munity detection, anomaly detection and recommender sys-
tem (Tang, Aggarwal, and Liu|2016; [Tian et al.|[2014} Gao,
Denoyer, and Gallinari|2011};|Gong et al.|2019; 'Yu and Han
2014 Jin et al.|[2021a).

Although many GCN-based methods have been proposed
in recent years, such as GraphSage (Hamilton, Ying, and
Leskovec| [2017), GAT (Velickovic et al|2018), MixHop
(Abu-El-Haija et al.|[2019), and HIN (Xu et al.[[2019),
they implicitly assume that most connected nodes are from
the same class or with similar attributes, which is typi-
cally called the homophily of network structure. GCN-based
methods reflect the homophily assumption by feature prop-
agation and aggregation within graph neighborhoods. And
these methods have shown satisfactory performance in many
downstream tasks on network with homophily. However, in
real world, there are also many networks where most con-
nected nodes are from different classes, which is called het-
erophily or low homophily. For example, in dating networks,
most people tend to connect with people of the opposite gen-
der. In protein networks, different types of amino are more
likely to connect with each other. Under heterophily or low
homophily, these methods suffer from poor performance,
as the propagation mechanism within graph neighborhoods,
which is the most fundamental part of GCN, is problematic
and will mix irrelevant information from different classes.
Therefore, existing GCN-based methods cannot adapt to the
scenario of heterophily or low homophily.

Recently, some efforts have been dedicated to general-
izing GCN to heterophilic networks. For example, Geom-
GCN (Pei et al.||2020) proposes a novel geometric aggre-
gation scheme which aggregates immediate neighborhoods
and distant nodes that have a certain similarity with the tar-
get node in a continuous space. H2GCN (Zhu et al.|[2020)
applies some key designs, such as higher-order neighbor-
hoods aggregation and combination of intermediate repre-
sentations, to boost learning from graph with heterophily.
GPR-GNN (Chien et al.||2021) deals with heterophily and
oversmoothing by combining each step of feature propaga-
tion with a learnable weight. GGCN (Yan et al.|2021)) al-
lows negative message propagation between graph neigh-
borhoods based on the similarity of representations in order



to decouple the heterophily and oversmoothing problems.
CPGNN (Zhu et al.|2021) incorporates an interpretable com-
patibility matrix for modeling the heterophily or homophily
level in graphs, enabling it to go beyond the assumption of
strong homophily. However, these methods suffer from seri-
ous problems. They coarsely aggregate higher-order (distant
neighbors), or combine the intermediate representations, to
deal with heterophily. While doing so can fuse effective in-
formation to some extent, it will also result in introducing
noise and irrelevant information that influence negatively
the prediction of downstream tasks. Most importantly, these
methods do not change the propagation mechanism which
is the essential part of GCN and is problematic under het-
erophily. This also make the representation of nodes from
different classes mixed and indistinguishable.

To solve this problem, we focus on designing an adap-
tive propagation mechanism for both heterophilic and ho-
mophilic networks, and giving a new HOmophily-Guided
Graph Convolutional Network called HOG-GCN. In this
new approach, we introduce a homophily degree matrix into
the graph convolution framework, which is used to model
the homophily and heterophily of networks and further con-
duct the propagation process. This homophily degree matrix
can be learned from the attribute and topology information
via extracting class-aware information during the propaga-
tion process. As a result, the new graph convolution frame-
work can automatically change the feature propagation pro-
cess via modeling the homophily degree between node pairs
using homophily degree matrix. The learning process of ho-
mophily degree matrix and the feature propagation process
are trained jointly in an end-to-end fashion. Finally, we the-
oretically prove that the adaptive propagation process can
constrain the similarity of representations between nodes ac-
cording to homophily degree.

Preliminaries

We first give the notations and problem descriptions, then
give the definition of homophily ratio.

Notations and Problem Descriptions

Given an undirected, unweighted and attributed network
G = (V,E,X), where V. = {v1,v2,...,0,} is a set of n
nodes, £ = {e;;} €V xVisasetofedges,and X € R™<f
is a set of node attributes, where m represents the number
of attributes. The i-th row of X represents the attributes of
node v;. The topological structure of G is represented by
an adjacency matrix A = [a;;] € R"*", where a;; = 1 if
nodes v; and v; are connected, or a;; = 0 otherwise. We
focus on the semi-supervised node classification task in this
paper. This is, assume each node belongs to one out of C'
classes and we have known the labels of a set of nodes Vi,
with |V1| < n. Each node v; € V}, is assigned to a label
y; € L = {1,2,...C’}. The objective of node classification
task is to predict the labels of V\ V.

Definition 1. Homophily Ratio. Given a network G =

(V, E, X), the homophily ratio h = |{(“"“):(“””‘)§f/\y":y“}l
is the fraction of edges which connect nodes that have the
same class, i.e., intra-class edges.

The homophily ratio A measures the overall homophily
level in the graph and thus we have h € [0, 1]. To be specific,
graphs with h closer to 1 tend to have more edges connecting
nodes within the same class, or say stronger homophily; on
the other hand, graphs with h closer to 0 tend to have more
edges connecting nodes in different classes, or say a stronger
heterophily.

The Framework

We first give a brief overview of our approach, and then in-
troduce the proposed new method in specific including de-
tailed descriptions of each component.

Overview

To let the propagation mechanism of GCN essentially suit-
able for both homophily and heterophily, we propose a novel
homophily-guided graph convolution framework that can
automatically learn the propagation process according to
the homophily degree between node pairs, which is called
HOG-GCN. In specific, we incorporate a homophily de-
gree matrix into the graph convolution framework for mod-
eling the homophily and heterophily and further use it to
adaptively change the propagation process between neigh-
borhoods. The whole structure of the proposed approach is
shown in Fig. [T} which consists of two components: ho-
mophily degree matrix estimation and homophily-guided
propagation. The homophily degree matrix is learned from
the attribute and topology information during the propaga-
tion process, which is further used to conduct the feature
propagation between neighborhoods. In return, the propaga-
tion process can help learn better homophily degree matrix
through downstream semi-supervised task. Therefore, these
two components can be enhanced by each other and trained
jointly. For the homophily degree matrix, we extract class-
aware information from node attributes and network topol-
ogy, respectively, and then define the whole homophily de-
gree based on these two types of information. From the per-
spective of attributes, we leverage multi-layer perceptron to
extract class-aware information, since node attributes are not
constrained by heterophily. Then, the homophily degree in
attribute space can be further calculated. From the perspec-
tive of network topology, since it exhibits different degrees
of heterophily, we consider making full use of the available
label information to capture homophily degree in topology
space. To this end, we propose a generalized label propaga-
tion technique with a learnable weight matrix, which can
reflect homophily degree between node pairs in topology
space. The intuition is that the influence between intra-class
labels is greater than that between inter-class labels. For the
homophily-guided propagation, we introduce the homophily
degree matrix into the propagation process which can reveal
the underlying distribution of homophily or heterophily in
networks, enabling the framework to adaptively change the
feature propagation weights according to homophily degree
between neighborhoods.

Homophily Degree Matrix Estimation

To adaptively change the propagation process for homophily
and heterophily, we learn the homophily degree between
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Figure 1: The structure of HOG-GCN, which consists of two components, including (a) homophily degree matrix estimation

and (b) homophily-guided propagation.

node pairs during the propagation process. The homophily
degree describes the extent to which two nodes belong to
the same class. However, it is difficult to calculate the ho-
mophily degree directly from node labels, since only part
of label information is available under the semi-supervised
task. To this end, we consider estimating the homophily de-
gree between node pairs from attribute space and topology
space, respectively, and then combine them with adjustable
parameters.

On one hand, from the perspective of attribute space, we
apply graph-agnostic multi-layer perceptron (MLP) to ex-
tract class-aware information from original node attributes.
The [-th layer of MLP is defined as:

Zy) = o2 IWD) (1)
where Zfr? ) = X, Wﬁ) is the learnable weight matrix for
MLP, and o the activation function. Denote the output of
the final layer of MLP as Z,,, then we can obtain the soft
assignment matrix B € R"*¢ as follows :

B = softmax(Z,,) 2)

Each element B;. denotes the probability that node v; be-
longs to class c. Let all parameters of MLP be ©,,, , then the
optimal ©}, is obtained by minimizing the following loss of
predicted labels by MLP:

1 N
©;, = argmin L,,;, = argmin —— J(bMP y,
O "oe, Vi v;e\:@ ( :
(3)

where l;amlp is the predicted labels of v, by MLP. Since soft
assignment matrix B is learned under the guidance of semi-
supervised classification, it can capture class-aware informa-
tion in attribute space. Then based on the matrix B we can

calculate the extent that two nodes belong to the same class,
called homophily degree matrix, which is defined as:

S = BBT 4)

where S;; = bib]T denotes the extent to which node v; and
node v; belong to the same class.

It is worth noting that the homophily degree matrix S is
estimated based on original node attributes, which are not
constrained by the heterophily of networks. Therefore, it
also holds in networks with heterophily or low homophily.

On the other hand, from the perspective of topology
space, network topology contains many useful information
even if it exhibits strong heterophily. However, it is also dif-
ficult to estimate the homophily degree directly based on the
topology, as we may not know the distribution of heterophily
of network in advance. To address this problem, we further
apply label propagation technique to estimate the homophily
degree matrix in topology space.

The classic label propagation typically assumes that two
connected nodes are more likely to have the same class, and
thus propagates labels iteratively between neighborhoods.
Let YO = [y{V 480 D)7 € R"C denotes the soft la-

bel matrix in iteration ! > 0, where y(l)

,~ represents predicted
label distribution for node v; in iteration [. When [ = 0,
the initial label matrix Y(?) is initialized by the labels of

(0)’ y(O) (0)]T

training data, i.e., YO = [y1") y5 ', ..., yn]T, which con-

sists of one-hot label indicator vectors ygo) for v; € Vi, or
zero vectors otherwise (i.e., unlabeled nodes). Then the label
propagation in iteration [ is defined as follows:

Y = p=tay =1,
yl(l) = (0),Vvi eV

)

(&)

where D is the degree matrix with entries D;; = ) j Aij.
In this equation, all nodes propagate labels to their direct
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neighborhoods first, and then the labels of all labeled nodes
are reset to their initial labels.

However, classic label propagation technique aims to cap-
ture the assumption of homophily, which can not adapt
to networks with heterophily directly. To capture the ho-
mophily degree between node pairs, we generalize classic
label propagation with a learnable weight matrix, which is
trained under the guidance of labeled data. The key intuition
is that the influence between intra-class label is greater than
that between inter-class label. Thus the learned weight ma-
trix can be used to represent the extent to which two nodes
belong to same class. Since networks exhibit different de-
grees of heterophily, we perform label propagation over k-
order structure of network to capture more homophilic nodes
(e.g., k = 2). The k-order structure is defined as:

Ay = A+ A2+ ..+ AF (6)

Then the generalized label propagation in iteration [ is de-
fined as:
vy =D (A, 0T)YD (7

where D,:l is the diagonal degree matrix for matrix A, © 7.
In the equation above, all nodes propagate labels to their k-
order neighborhoods according the learnable edge weights.
Then we can learn the optimal edge weights 7 by minimiz-
ing the loss of predicted labels by generalized label propa-
gation:

1
T*=argmin £;,, = argmin —— Z J(GP,y)  (8)
T T Vil s

where J is the cross-entropy loss, §%” and y, are the pre-
dicted label distribution of v, by generalized label propaga-
tion and the true one-hot label of v,, respectively. Note that
we do not add to or remove edges from graphs, but only
learn the weights of existing k-order neighborhoods. The
optimal 7 maximizes the probability that each node is cor-
rectly classified by generalized label propagation, thus also
increases the intra-class influence. This reflects the extent
to which two nodes belongs to the same class. In order to
form an end-to-end pattern, here we take the weight matrix
T as the homophily degree matrix estimated from topology
space.

At last, to make the model more effective and robust, we
combine the hompily degree matrix estimated from attribute
space and topology space with adjustable parameters as fol-
lows:

H=aS+pT ©)]

where a and 3 are hyper-parameters. Also of note, matrix
S contains homophily degree between any node pairs while
T learns homophily degree within k-order neighborhoods.
It does not influence the performance, as we will filter the
entries that do not involve in propagation process.

Homophily-guided Propagation

The core of our approach is adaptively learning the propaga-
tion process for homophily and heterophily. The homophily
degree matrix which represents the extent to which two
nodes belong to the same class can reflect the underlying

distribution of homophily or heterophily of networks. There-
fore, we incorporate the learnable homophily degree matrix
into graph convolution framework to automatically change
the propagation weights between neighborhoods according
to homophily degree. To be specific, during the propaga-
tion process, we aim to increase the feature influence be-
tween underlying intra-class nodes and reducing feature in-
fluence between underlying inter-class nodes according to
the homophily degree matrix. To achieve this, we assign dif-
ferent weights to different neighborhoods according to the
homophily degree, which can distinguish the homophily or
heterophily between neighborhoods. Similarly, as we may
not know the underlying distribution of heterophily in ad-
vance, we perform feature propagation over the k-order
neighborhoods, to capture more homophilic nodes. In ad-
dition, we deal with ego-representation and neighborhood-
representation separately to preserve more personalized in-
formation. Then, the feature propagation process of the pro-
posed method HOG-GCN in iteration [ is given by:

ZW = o(uzt=WO 4 eD A, 0 HZEDWD)Y (10)

where 1 and & denote the weights of ego-representation and
neighborhood-representation respectively, D is the diagonal
degree matrix, Z(°) = X is the original node attributes. o is
the activation function.

Also of note, our proposed graph convolution frame-
work can be taken as learning proper attention weights. The
most significant difference between our approach and those
feature-based attention methods is that, the attention weights
are learned based on feature similarity alone, while our pro-
posed method measures the edge weights according to the
underlying homophily degree, which is more task-oriented.
In addition, it is often believed that the 2-hop neighborhoods
of a node v is always homophily-dominant in expectation
(Zhu et al.|[2020). So, we also set k = 2 in this work since
it yields best performance in experiments and has relatively
lower complexity meanwhile.

Optimization Objective

The whole framework consists of two components: ho-
mophily degree matrix estimation and homophily-guided
propagation. The first component contains MLP and the gen-
eralized label propagation. The objective functions of MLP
and generalized label propagation are give by Eq. (3) and Eq.
(8). In the second component, we incorporate the homophily
degree matrix into the graph convolution framework. Denote
all parameters of graph convolution operation as O, then
we can get the optimal © according the final output Z of
HOG-GCN:

R = softmax(Z)

1
O, = argminLy., = argmin —— Z J(rI" yq) an
6“1 |VL| v, €EVL

In this model, the homophily degree matrix is learned from
attribute and topology information during the propagation
process and further used to conduct feature propagation. In
return, the propagation process can help learn better ho-
mophily degree matrix. That is, these two components are
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enhanced by each other. Therefore, we combine these ob-
jectives to train the whole process in an end-to-end fashion
as:

@;, e, T" = grgel)ninT Loen + Alpmip +vLip (12)

where ), 7 are balance hyper-parameters. In this way, the
feature propagation process is guided by current homophily
degree matrix, and the result of propagation can conduct
the learning of homophily degree matrix through semi-
supervised classification.

Theoretical Analysis

In this section we prove that our new approach can con-
strain the similarity of representations between nodes within
k-order neighborhoods according to homophily degree be-
tween them. In other words, nodes with higher homophily
degree have more similar representation (Theorem 1).

Theorem 1. Denote the output of HOG-GCN as Z, then its
propagation process can be taken as the minimization of the

objective:
1 2
O=5> > Hylzi-Z) (13)

v;€Vv; €Nk (v;)

where Ny (v;) denotes the k-order neighborhoods of node
v;, Z; and Z; are representations for node v; and v; respec-
tively.

Proof: We can rewrite the above equation as:

1 2
O=5> > HylZz-%l
v; €V v; €Ny (v5) (14)
=tr(ZT(D - A, © H)Z)
where D is the degree matrix for Ay © H. By setting deriva-

tive of Eq. (14) with respect to Z to zero (assume H is a
symmetric matrix), we have:

90 oh—Ayo H)Z =0

0Z
U (15)
Z=D"YA,oH)Z
Then, it can be explained as a limit distribution where
Zyimic = DAy © H) Zjimit (16)

We use the following iterative form to approximate the limit
with [ — oo:

ZW = DY (Ap © H)Z!-D (17)

When ignoring the non-linear transformation and initialize
Z©) = XW, we have:

ZW =D"Y (A, 0 H)Zz!Y)
=D (A), © H)2Z2(-?
=D~ (Ax o H)'Z2®
=D (A, 0 H)]'XW

which corresponds to the propagation process of HOG-
GCN.

(18)

Experiments

We first give the experimental setup, then compare our
model HOG-GCN with the state-of-the-art methods on
transductive node classification and visualization. Last, we
give the parameter analysis and homophily degree matrix
analysis.

Experimental setup

Datasets. We evaluate the performance of the proposed
HOG-GCN and existing methods on seven real-world
datasets. To demonstrate that HOG-GCN can adaptively
learn propagation mechanism for both homophily and het-
erophily, we use four heterophilic networks and three ho-
mophilic networks for evaluation. The heterophilic networks
include three web page datasets, Cornell, Texas and Wiscon-
sin (Pei et al.|2020), and a film industry dataset Film (Tang
et al.[2009). The homophilic networks include Cora, Cite-
seer and Pubmed which are all citation networks (Sen et al.
2008; [Namata et al.|[2012). The detailed statistics of these
datasets is summarized in Table [T} where H.R. represents
the homophily ratio of networks.

Datasets Texa. Wisc. Corn. Film Cora Cite. Pubm.

Nodes 183 251 183 7600 2708 3327 19717
Edges 309 499 295 33544 5429 4732 44338
Features 1703 1703 1703 931 1433 3703 500
Classes 5 5 5 5 7 6 3
HR. 0.09 0.19 0.30 0.22 0.81 0.74 0.80

Table 1: Statistics of datasets

Baselines. We compare our proposed approach HOG-GCN
with the following baselines: (1) MLP, which only uses at-
tribute information; (2) DeepWalk (Perozzi, Al-Rfou, and
Skienal |2014), which uses network topology information
alone through random walks; (3) traditional GNN models :
GCN (Kipf and Welling|[2017) and GAT (Velickovic et al.
2018)), which work under the assumption of homophily;
and (4) GNN models tackling heterophily: Geom-GCN (Pei
et al.|2020), H2GCN (Zhu et al.|2020), CPGNN (Zhu et al.
2021), GPR-GNN (Chien et al.|2021)) and AM-GCN (Wang
et al.[|2020). Particularly, as CPGNN has four different vari-
ants, we choose the best two for comparison.

Parameter Setup. For all datasets, we generate 10 random
splits for training, validation and test. For each split we se-
lect 48% of nodes in each class to form the training set, 32%
of nodes for the validation set and the remaining as the test
set. For a fair comparison, all methods share the same 10
random splits. All the parameters of the baseline methods
were set as what were used by their authors. In our approach
HOG-GCN, for the homophily degree matrix estimation, we
use a two-layer MLP with 512 units in the hidden layer. For
the homophily-guided propagation, we use two-layer graph
convolution operation with 256 units in the hidden layer. We
set a to 1 and 3 to 0.1, and set both v and p to 1. We adopt
Adam optimizer (Kingma and Ba|2015) and the default ini-
tialization in pytorch.



Datasets / Accuracy (%) Texas Wisconsin Cornell Film Cora Citeseer Pubmed
GCN 54.05+4.36 50.3947.55 53.78+8.59 28.78+1.48 86.48+1.43 73.58+1.37 87.3440.65
MLP 81.08+4.83 85.4943.53 83.2447.03 36.58+1.44 71.2941.60 66.96+2.61 86.48+0.63
GAT 57.30+3.38 54.3145.62 54.59+7.33 28994144 87.16%1.17 75.64+1.95 85.2540.60

DeepWalk 49.1943.38  53.5145.10 44.1249.12  23.7440.56  80.08+1.84 53.594+2.63 81.1440.54
H2GCN 79.73+7.27 82.554+4.33 78.38+4.35 36.71+1.41 86.48+1.63 75.56+2.18 88.7740.65
CPGNN-MLP 79.73+£6.54 84.53+6.48 73.51+6.02 36.73+1.03 84.57+1.59 72.104+2.70 87.6740.72
CPGNN-Cheby 74.32+7.38 81.76+6.74 63.51+£5.83 3551+1.85 87.18+1.13 75.52+1.84 89.0840.67
GPR-GNN 84.59+4.37 83.9243.14 82.9745.68 36.47+1.38 86.704+1.03 75.12+£1.98 87.38+0.63
AM-GCN 78.38+7.25 81.76+4.96 78.38+4.98 33.60+1.17 86.66+1.36 76.01+£1.90 86.7840.60
Geom-GCN 66.22+6.65 62.55+5.22 55.684+8.04 32.39+1.49 8491+1.12 73.164+1.92 88.4140.63
HOG-GCN 85.17+4.40 86.67+3.36 84.32+4.32 36.82+0.84 87.04+1.10 76.15+1.88 88.7940.40

Table 2: Classification results with mean value and standard deviation. The best result is bold and the second best is underlined.
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Figure 2: Visualization results on Citeseer dataset

Node Classification

The node classification results are reported in Table 2] We
use mean accuracy as the evaluation metric along with the
standard deviation of 10 splits. We have the following ob-
servations.

e Qur approach HOG-GCN outperforms all the other
methods compared on all of the four heterophilic net-
works, i.e., Texas, Cornell, Wisconsin and Film. It
demonstrates the importance of incorporating and learn-
ing the homophily degree matrix into graph convolution
framework for automatically changing the propagation
process. To be specific, HOG-GCN significantly outper-
forms the traditional GNN models, i.e., GCN and GAT,
by 26.49% and 24.47% on average, since they cannot
generalize to the scenario of heterophily (and are even
defeated by MLP which only uses attributes). Compared
with methods that focus on tackling heterophily, such
as H2GCN, Geom-GCN, CPGNN and GPR-GNN, our
HOG-GCN also achieves an improvement between 3.9%
and 19.03% in terms of mean accuracy. These results
demonstrate the effectiveness of HOG-GCN in the sce-
nario of heterophily.

* On homophilic networks (i.e., Cora, Citeseer, Pubmed),
the proposed HOG-GCN performs better or comparable
to the baselines. To be specific, HOG-GCN performs best
on Citeseer, and achieves the second best on Pubmed.
Notably, HOG-GCN outperforms GCN and GAT which
have an implicit assumption of strong homophily on
these three homophilic networks by 1.52% and 0.98% on
average. These results demonstrate that our method has
the best performance in the scenario of heterophily while
maintaining comparable or better performance in the sce-
nario of homophily, and further validate the effectiveness

and robustness of the proposed approach.
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Figure 3: Analysis results of order k

Visualization

For intuitively illustrating that our approach can gain better
results, we use t-SNE (Hinton|[2008), which can project the
learned node representations onto a two-dimensional space,
to visualize the derived representations. Fig. 2] shows the vi-
sualization results of GCN, H2GCN, CPGNN, GPR-GNN
and our proposed HOG-GCN on Citeseer dataset as an il-
lustrative example, where nodes with same color have same
class label. As shown, the visualization results of GCN and
CPGNN are less satisfactory in this case, since points with
same color are dispersed and some points with different
color are mixed with each other. The results of GPR-GNN
and H2GCN are relatively better but the borders between
different classes are still not so clear. Obviously, the visual-
ization of our HOG-GCN performs much better, where the
representations have the highest intra-class similarity and
form more discernible clusters. The results of visualization
validate that our proposed method can gain better result, and
demonstrate the effectiveness of our theoretical analysis.
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Parameter Analysis

We also investigate the sensitivity of parameters in HOG-
GCN. We take Texas, Cornell, Cora, Citeseer as examples,
where Texas and Cornell exhibit heterophily while Cora and
Citeseer exhibit homophily.

Analysis of order k. In our proposed method, we conduct
generalized label propagation and homophily-guided fea-
ture propagation over the network topology within k-order
neighborhoods, since we may not know the distribution of
heterophily of network. Here, we vary the order & from 1 to
6 and report the classification results. The results are shown
in Fig. E} As shown, results on Texas and Cornell have a
significant improvement when k = 2 than £ = 1. While on
Cora and Citeseer, the method only has a slight improvement
when k = 2 than k£ = 1, and the accuracy drops as increas-
ing k from 2 to 6. Based on these results, we conclude that on
heterophilic networks where most directly connected nodes
are from different classes, we often need a proper recep-
tive field to capture enough intra-class information; while
on homophilic networks where most connected nodes are
from the same class, direct neighborhoods may be enough
to provide intra-class information. For both homophilic and
heterophilic networks, aggregating much information from
higher-order neighborhoods will mix much noise and irre-
lated information that will negatively influence the predic-
tion of nodes.

Analysis of weights « and (. In our model, o and j3 repre-
sent the weight of homophily degree matrix estimated from
attribute space and topology, respectively. Here we investi-
gate the influence of « and 5 on node classification by vary-
ing them from O to 1. The results are shown in Fig. ] On
Texas dataset, the performance is relatively poor when ig-
noring attribute information or topology information (i.e., «
is 0 or 5 is 0). The method performs best when « is 0.4 and
B is 0.6, demonstrating that combining attribute information
and topology information can learn better homophily de-
gree matrix and further obtain better performance. On Cora
dataset, the performance is relatively stable, demonstrating
that homophilic networks may not need fine-grained guid-
ance during the propagation process. The results demon-
strate the importance of combining node attributes and net-
work topology in the estimation of homophily degree ma-
trix, and further validate the effectiveness and robustness of
the proposed approach.
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Figure 5: Analysis results of homophily degree distribution

Homophily Degree Matrix Analysis

In the proposed graph convolution framework, we incor-
porate a learnable homophily degree matrix, which can re-
flect the homophily or heterophily of networks, to adaptively
change the propagation process. Therefore, in order to in-
vestigate whether the homophily degree matrix learned by
our proposed model are meaningful, here we analyze the
homophily degree distribution on homophilic edges (i.e.,
two nodes with same class) and heterophilic edges (i.e.,
two nodes with different classes) within 2-order neighbor-
hoods, respectively. Fig. 5] shows the analysis results on a
heterophilic network Texas and a homophilc network Cora.

As shown, for both homophilc and heterophilic networks,
our approach can adaptively learn higher homophily degree
between node with the same class, and lower homophily de-
gree between nodes with different classes. During the fea-
ture propagation process, the homophilic edges are given
greater weights while the heterophilic edges are given
smaller weights according to homophily degree matrix. The
results demonstrate that our approach can adaptively learn
different propagation process for both homophily and het-
erophily, enabling it to go beyond the strong assumption of
homophily.

Conclusion

In this paper, we propose a novel homophily-guided graph
convolution network which can be universally suitable for
both homophilic and heterophilic networks. In specific, we
incorporate a learnable homophily degree matrix into graph
convolution framework for modeling the homophily and
heterophily of networks and further adaptively changing
the propagation process according to homophily degree be-
tween node pairs. The homophily degree matrix is learned
from attribute and topology information via extracting class-
aware information, which can conduct the propagation pro-
cess. In return, the result of propagation process can further
help learn homophily degree matrix through downstream
semi-supervised tasks. These two process can be enhanced
by each other and trained jointly. Experiments on seven real-
world datasets demonstrate that the proposed new approach
outperforms existing methods under heterophily, while gains
competitive performance under homophily.
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